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We examine the reaction fronts that develop when an undersaturated ‘injection fluid’
displaces a saturated ‘formation fluid’ in a chemically reactive porous medium. We
allow the injection and formation fluids to differ both in temperature and in chemical
composition. The undersaturation of the incoming fluid drives a dissolution reaction
and leads to the formation of a ‘depletion’ front. Under certain circumstances, which
we describe, the temperature difference drives a separate thermal reaction front. We
develop long-time asymptotic solutions of the governing equations which illustrate
the interaction between thermal reaction fronts and depletion fronts. Two distinct
regimes arise. If the compositional difference between the injection and formation
fluids exceeds a critical value, the depletion front travels faster than the thermal
front, leaving the porous medium depleted of reactant from the source to a point
downstream of the thermal front and no thermal reaction front develops. Conversely,
if the compositional difference is smaller than the critical value, a thermal reaction
front advances ahead of the depletion front and so there is a double reaction front
structure. We illustrate the evolution of the thermal and compositional fields towards
these asymptotic solutions with numerical simulations. We discuss the implications of
this work for secondary mineralization in subsurface reservoirs.

1. Introduction
There are numerous industrial and natural situations in which fluid of one

temperature and composition migrates through a permeable rock, displacing an
original fluid of different temperature and composition. Important industrial examples
arise in geothermal and hydrocarbon reservoirs. In the geothermal case, warm water
or superheated vapour is produced from a subterranean reservoir and replaced by
cold water injected by commercial operators. As the cold water migrates through
the reservoir, it heats up and displaces the original formation fluid. In hydrocarbon
reservoirs, the original formation often contains both water and oil in the pore
spaces. As oil is extracted from a producer well, water is typically introduced at an
injector well some distance away. There are also natural situations in which fluid
of one temperature and composition may flood into an aquifer filled with fluid of
a different temperature and composition. Events which might lead to such flooding
include earthquakes and changes in sea level. The common feature is that a flow path
becomes established between two bodies of water in different thermal and chemical
states.

As an intruding fluid moves through a porous matrix, minerals in solution in
the fluid may become undersaturated or supersaturated as a result of changes in
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temperature and pressure, leading to dissolution or precipitation reactions which
act to restore the system to equilibrium (Phillips 1991). In the geothermal and
hydrocarbon industries, important precipitation reactions include the formation
of calcium carbonate, silica and barium sulphate. In a geological context, the
dolomitization of limestone can occur when magnesium-rich seawater percolates
through a formation previously flooded with fresh water. There is considerable interest
in the dynamics of these reactions since the associated changes in permeability may
change the pattern and rate of fluid flow through the rock.

When fluid is injected into a porous layer at a different temperature, a thermal front
develops across which the temperature of the fluid adjusts to that of the formation.
This thermal front travels more slowly than the fluid itself, since the fluid advances
through the pore space alone, while the thermal signal must propagate through the
grains of the porous medium as well (Phillips 1991; Woods & Fitzgerald 1993). As the
injected fluid travels across this temperature front, the solubility of dissolved minerals
changes, and this may lead to precipitation or dissolution and the formation of a
thermal reaction front.

Thermal reaction fronts are quite distinct from the depletion fronts which develop
when undersaturated fluid is injected into a porous layer. In the case of depletion
fronts, the advancing fluid dissolves some of the mineral in the formation to restore
the fluid to chemical equilibrium, and thereby depletes the formation of mineral
near the source of fluid. Phillips (1991) and Hinch & Bhatt (1990) show how these
depletion fronts can be modelled mathematically by considering the conservation of
mass and a reaction law controlling the kinetics of the reaction.

In comparison with depletion fronts, thermal reaction fronts have received relatively
little attention. The main purpose of this work is to develop a model for thermal
reaction fronts, and to explore how they interact with depletion fronts when fluid
is injected into a reactive porous layer. First, we develop a theoretical model of the
reactions which arise when an injection fluid displaces a formation fluid of different
composition and temperature. Secondly, we develop long-time asymptotic solutions
which determine the conditions under which thermal reaction fronts form. Thirdly,
we use numerical simulations to illustrate the evolution of the system from the
first injection of the fluid to the long-time asymptotic state. Finally, we consider
the implications of our work for the injection of water in both geothermal and
hydrocarbon reservoirs.

Our model concerns a simple displacement flow rather than a multi-phase flow in
which the two fluids are simultaneously present but flow at different rates. Flows of
the latter type, which are considerably more complicated, are considered in similar
contexts by Fayers (1962), Karakas, Saneie & Yortsos (1986), deZabala et al. (1982)
and deZabala & Radke (1986).

2. The governing equations
We consider the displacement of a formation fluid in a semi-infinite, one-

dimensional porous medium occupying the half-space x � 0 (figure 1). The porous
medium is filled initially with a formation fluid which is in thermal and chemical
equilibrium, and fluid motion begins at time t = 0. For later times t > 0, the injection
fluid is introduced at x = 0 with constant Darcy velocity u in the x-direction.

We suppose that the porous medium contains a single chemically reactive species.
This species can exist either in the solid state on the grains of the porous medium, or
as a solute in the injection and formation fluids. The amount of reactive species in
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Figure 1. Sketch showing typical solutions at a time t after the injection fluid is first
introduced. Variables are defined in the text. (a) A single reaction front solution in which
the thermal front travels upstream of the depletion front. Fluid concentration c, equilibrium
concentration ce and solid concentration s are shown. (b) A double reaction front solution in
which the thermal front travels downstream of the depletion front.

the solid state is expressed by the ‘solid concentration’ s(x, t) which has dimensions
of moles of solid reactant per unit volume of solid. It follows that unit volume
of the fluid-filled porous medium contains (1 − φ)s moles of reactant in the solid
state, where φ is the porosity. The initial solid concentration in the formation is
s(x, 0) = sf . Similarly, the amount of reactant dissolved in the fluid is expressed
by the ‘fluid concentration’ c(x, t) which has dimensions of moles of reactant in
solution per unit volume of fluid. It follows that unit volume of the fluid-filled porous
medium contains φc moles of dissolved reactant. The initial fluid concentration in
the formation is c(x, 0) = cf .

We now consider the equilibrium concentration ce(x, t) of the dissolved reactant,
which has the same dimensions as the true concentration c. Since the formation fluid
is assumed to be in equilibrium initially, it follows that ce(x, 0) = c(x, 0) = cf . In
general, the equilibrium concentration is a function of the temperature and pressure
of the fluid. Specifically, the equilibrium concentration is given by (Nordstrom &
Munoz 1994)

ce = ce0 exp

(
−�Gr

RT

)
, (2.1)

where R = 8.3 J mol−1 K−1 is the gas constant, T is the temperature in Kelvin and
�Gr (p, T ) is the Gibbs free energy of solution at pressure p and temperature T .
The Gibbs free energy in equation (2.1) is calculated relative to that of a solution
at the reference concentration ce0. For example, in the case of silica at 1 bar and
25 ◦C, Nordstrom & Munoz (1994) quote a value �Gr = 22.7 kJ mol−1 with respect
to a ‘1 molal reference concentration’ (corresponding to ce0 = 1000 mol m−3 in our
volumetric concentration units). For simplicity, we shall assume that the equilibrium
concentration is independent of pressure and that the temperature range is sufficiently
small that equation (2.1) can be approximated by a linear relationship of the form
ce = a + bT . For a prograde mineral such as silica, �Gr > 0 and so b > 0 (Manning
1994), while for a retrograde mineral such as anhydrite, �Gr < 0 and so b < 0
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(Bowers, Jackson & Helgeson 1984). In the analysis below we derive a solution which
applies equally to prograde and retrograde minerals.

2.1. The evolution of temperature and equilibrium concentration

We now consider the evolution of the system when the formation fluid at temperature
Tf and concentration cf is displaced by the injection fluid at temperature Ti and
concentration ci . Phillips (1991, § 2.8) shows that the evolution of temperature is
controlled by an advection–diffusion equation of the form

∂T

∂t
+

(ρcp)l
φ(ρcp)l + (1 − φ)(ρcp)s

u
∂T

∂x
= DT

∂2T

∂x2
+ QH, (2.2)

where DT is the effective thermal diffusivity of the fluid-filled porous medium, taking
account of both molecular diffusion and macroscopic dispersion. The quantity (ρcp)l
is the volumetric heat capacity of the fluid, (ρcp)s is the volumetric heat capacity
of the solid grains of the porous medium and QH is the volumetric rate of heat
production by chemical reactions.

We now consider whether the heat produced or absorbed by chemical reactions
(QH ) is significant in the thermal balance. A typical enthalpy of dissolution is at
most of order 100 kJ mol−1, while typical aqueous concentrations are at most of
order 10−3 mol kg−1 (Nordstrom & Munoz 1994). Since the heat capacity of water
is 4.2 kJ kg−1 K−1 we expect the temperature change due to reactions to be at most
of order 0.02 K. This is much smaller than the temperature difference (Tf − Ti) of
between 1 K and 100 K which we envisage between the formation and injection fluids.
Consequently, we make the approximation QH = 0. By restricting attention to this
regime in which the chemistry has a negligible effect on the temperature, we are able
to decouple the thermal field from the compositional field.

Returning to equation (2.2), we define the dimensionless number

Γ =
(ρcp)l

φ(ρcp)l + (1 − φ)(ρcp)s

which measures the advective propagation speed of thermal signals as a fraction of
the Darcy velocity. Since it is assumed that ce = a + bT , equilibrium concentration
can be used as a proxy for temperature, and all thermal effects can be described in
terms of the attendant change in equilibrium concentration ce. Accordingly, equation
(2.2) can be rewritten as

∂ce

∂t
+ Γ u

∂ce

∂x
= DT

∂2ce

∂x2
. (2.3)

This equation admits front-like solutions associated with changes in temperature
and we shall refer to these as ‘thermal fronts’. Thermal fronts propagate at speed
Γ u and spread at a rate governed by the effective thermal diffusivity DT . In the
cases where the thermal front drives a reaction, the associated fronts in the fluid
and solid concentrations will be labelled ‘thermal reaction fronts’. The equilibrium
concentration of the injection fluid is cie = a + bTi . Since we require the injection
fluid to be undersaturated, it follows that ci � cie. The formation fluid is saturated
initially, so equation (2.3) must be solved subject to the initial condition ce(x, 0) = cf

and the boundary condition ce(0, t) = cie for t > 0.

2.2. The evolution of fluid concentration and solid concentration

We now consider the chemical transfer of a mineral species between the porous
medium and the fluid. Our approach mirrors that of Phillips (1991, § 4.3). We assume
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that the rate of transfer of reactant from the porous medium to the fluid takes the
form

QC = φk

(
s

sf

)
(ce − c)H (s). (2.4)

The purpose of the Heaviside function

H (s) =

{
0, s � 0

1, s > 0

in equation (2.4) is to ensure that the unphysical regime s < 0 does not occur. The
parameter k is a reaction rate constant with dimensions of reciprocal time and QC

has dimensions of moles of reactant per unit volume of fluid-filled porous medium
per unit time. The rate law of equation (2.4) expresses the idea that we expect the
rate of reaction to increase with the amount of solid reactant present on the grains
of the porous medium s, and with the degree of disequilibrium of the fluid (ce − c).

In a real system, the reaction rate constant k is expected to depend on temperature
via an Arrhenius equation (Lasaga 1998) of the form

k(T ) =

[
kr exp

(
Ea

RTr

)]
exp

(
−Ea

RT

)
, (2.5)

where Ea is the activation energy of the reaction and the reaction rate takes the value
kr at the reference temperature Tr . Lasaga (1984) suggests that an activation energy
Ea = 60 kJ mol−1 may be considered typical for mineral–water reactions.

In our model, we assume for simplicity that the reaction rate is independent of
temperature. This is valid if the change in temperature across the reaction front �T is
small compared to the absolute temperature T . Thus, when �T/T � 1, the fractional
change in reaction rate associated with the thermal front is small. The assumption of
a constant reaction rate allows us to derive some simple analytical solutions which
give insight into the interaction of thermal and compositional fronts. We shall then
consider the effect that a temperature-dependent reaction rate would have on these
solutions.

Phillips (1991, § 2.9) shows that the fluid concentration is controlled by an advection–
diffusion-reaction equation of the form

∂c

∂t
+

(
u

φ

)
∂c

∂x
= DC

∂2c

∂x2
+

QC

φ
, (2.6)

where DC is the effective compositional diffusivity, taking account of both molecular
diffusion and macroscopic dispersion. Thus, in the absence of reactions (QC = 0),
there is a ‘fluid front’ separating the injection fluid from the formation fluid, which
travels at the interstitial fluid speed u/φ and spreads under dispersion and diffusion.

The concentration of reactant in the solid changes because of chemical transfer
from the fluid. To allow for the stoichiometry of the reaction, we suppose that
ν moles of dissolved reactant are required to react fully with one mole of solid
reactant. Consequently, a change δc in the fluid concentration leads to a change
δs = −φδc/ν(1 − φ) in the solid concentration. The solid concentration is therefore
governed by the equation

∂s

∂t
= − QC

(1 − φ)ν
. (2.7)
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2.3. Dimensionless form of the governing equations

It is useful to recast the governing equations (2.3), (2.6) and (2.7) in dimensionless form.
The thermal front migrates with speed Γ u, and so we introduce the dimensionless
coordinates

ζ =
Γ u

DT

(x − Γ ut), τ =
Γ 2u2

DT

t, (2.8)

and the dimensionless concentrations

C(ζ, τ ) =
c − ci

cie − ci

, CE(ζ, τ ) =
ce − ci

cie − ci

, S(ζ, τ ) =
s

sf

. (2.9)

We stress that the dimensionless position ζ moves with respect to the dimensional
position x so that the point of fluid injection x = 0 is given in dimensionless terms
by ζ = −τ .

It follows from equations (2.3), (2.4), (2.6) and (2.7) that the evolution of the system
is governed by the dimensionless system of equations

∂CE

∂τ
=

∂2CE

∂ζ 2
, (2.10)

∂C

∂τ
+ V

∂C

∂ζ
= ε

∂2C

∂ζ 2
+ PS (CE − C) , (2.11)

∂S

∂τ
− ∂S

∂ζ
= −λPS (CE − C) , (2.12)

with initial conditions

CE(ζ, 0) = C(ζ, 0) = β and S(ζ, 0) = 1 for ζ � 0, (2.13)

and boundary conditions

CE(−τ, τ ) = 1 and C(−τ, τ ) = 0 for τ > 0. (2.14)

The five dimensionless parameters which control the system are

V =
1 − φΓ

φΓ
, P =

kDT

Γ 2u2
, λ =

φ(cie − ci)

sf (1 − φ)ν
, β =

(cf − ci)

(cie − ci)
, ε =

DC

DT

. (2.15)

The parameter V is the dimensionless speed of the fluid front in relation to the
thermal front (figure 1), while the parameter P is a dimensionless reaction rate. The
governing equations show that chemical reaction occurs over a timescale 1/k, while
the thermal front becomes established on a timescale DT /Γ 2u2. (This is the value of
time t for which the thermal front has been advected a distance Γ ut which exceeds
the distance

√
DT t that it has spread under dispersion and diffusion.) Thus, P is the

ratio of the timescale of formation of the thermal front (DT /Γ 2u2) to the timescale
over which reactions occur (1/k). The parameter λ is a measure of the undersaturation
cie − ci of the injection fluid which tends to remove solid reactant from the rock.
Specifically, λ is the ratio of the maximum amount of solid reactant which could
be removed by this reaction per unit volume φ(cie − ci)/ν to the amount of solid
reactant initially present on the rock per unit volume (1 − φ)sf . The parameter β is
the ratio of the difference in composition of the injection and formation fluids to the
undersaturation of the injection fluid. Finally, ε is a ‘reciprocal Lewis number’ giving
the ratio of the effective solutal and thermal diffusivities. Typically, ε � 1, and solutal
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diffusion can be neglected. For illustrative purposes, we shall assume that ε = 0.01 in
our simulations.

We note that P is the only dimensionless parameter that depends on the reaction
rate k. It follows that any temperature dependence of the reaction rate in equation
(2.5) could influence the solution only via the rate parameter P . Accordingly, we
shall derive solutions under the assumption that P is constant and then consider
qualitatively the effect that a temperature-dependent P would have on these solutions.

3. Asymptotic solutions of the equations at large times
Ogata & Banks (1961) give an exact solution of equation (2.10) with conditions

(2.13) and (2.14):

CE(ζ, τ ) = 1 + (β − 1)
1 + erf

(
ζ/2τ 1/2

)
− erfc

(
(ζ + 2τ )

/
2τ 1/2

)
exp (ζ + τ )

2
, (3.1)

where

erf(x) =
2√
π

∫ x

0

exp(−y2) dy and erfc(x) = 1 − erf(x).

Since erfc(x) ∼ (1/
√

π)x−1 exp(−x2) as x → ∞, the final term can be approximated at
long times, and we can obtain

CE(ζ, τ ) ≈ 1 + (β − 1)
1 + erf

(
ζ/2τ 1/2

)
2

, τ 	 1, (3.2)

which corresponds to a thermal front localized about ζ = 0. The condition τ 	 1
in equation (3.2) reflects the fact that the thermal front becomes established over a
dimensionless timescale of order unity. We note that the equilibrium concentration (or
equivalently, the temperature) is known exactly for all times and evolves independently
of any chemical reactions. This is a result of our assumption that the thermal effect
of reactions (the term QH in equation (2.2)) is negligible.

Before considering the evolution of the fluid and solid concentrations, it is useful
to recognize that two distinct types of solution may be expected depending on the
relative speeds of the thermal front and the depletion front (figure 1). The change in
equilibrium concentration across the thermal front tends to drive a reaction between
the fluid and the rock. No such thermal reaction front can form, however, if the
porous medium has already been depleted of reactant by the passage of the depletion
front. Thus, if the depletion front moves faster than the thermal front, we expect a
single reaction front solution with no thermal reaction front (figure 1a). Conversely,
if the depletion front moves more slowly than the thermal front, we expect a double
reaction front solution in which a thermal reaction front develops in addition to the
depletion front (figure 1b).

To determine the conditions under which each of these regimes arises, we present
a solution for the case of a single reaction front, and compare the calculated speed
of this depletion front with the speed of the thermal front. We then develop an
asymptotic solution for the case of a double reaction front where the thermal front
moves faster than the depletion front and leads to the formation of a thermal reaction
front.

3.1. Single reaction front solutions

We now find asymptotic solutions to equations (2.11) and (2.12) in the case where the
depletion front travels downstream of the thermal front as in figure 1(a). Following
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Phillips (1991) we expect the depletion front to be described by travelling wave
solutions of the form C(ζ − v1τ ), S(ζ − v1τ ), where v1 > 0 to ensure that the
depletion front front lies downstream of the thermal front. The boundary conditions
are C = S = 0 for ζ = −τ and C → β , S → 1 as ζ → ∞. The asymptotic solution at
long times is

C =
β

1 + exp(−ω1(ζ − v1τ ))
, S =

1

1 + exp(−ω1(ζ − v1τ ))
. (3.3)

Direct substitution yields

v1 =

(
λβ(1 + V )

(1 + λβ)
− 1

)
, ω1 =

P (1 + λβ)

1 + V
. (3.4)

Our assumption that v1 > 0 implies the condition

λVβ > 1 (3.5)

for this single reaction front solution to be valid. In physical terms, this is equivalent
to the condition

cf − ci > sf

(1 − φ)Γ ν

1 − φΓ
. (3.6)

We deduce that a single reaction front of the depletion type will occur if (i) the
difference in concentration between the formation and injection fluids is sufficiently
large; (ii) the concentration of the reactant on the rock is sufficiently small; or (iii)
the speed of the thermal front is sufficiently small. Furthermore, we deduce that
if the injected fluid has a greater concentration than the original formation fluid
(ci > cf ) then this single front structure is impossible and a double front structure
must develop. For example, in the case of a prograde mineral, it would be possible
to have ci > cie > cf if the injection fluid were much hotter than the formation fluid.
Conversely, if the injected liquid has a lower concentration than the formation fluid
(ci < cf ), then either a single reaction front or a double reaction front may develop,
depending on whether inequality (3.6) is satisfied.

3.2. Double reaction front solutions

We now consider the nature of the solution in the case where the thermal front
travels faster than the depletion front as in figure 1(b). We derive separate asymptotic
solutions in the region of the thermal front and in the region of the depletion front.

3.2.1. Depletion front

As in § 3.1, the depletion front is governed by equations (2.11) and (2.12) and we
expect travelling wave solutions of the form C(ζ +v2τ ), S(ζ +v2τ ), with the restriction
that v2 > 0 so that the depletion front lies upstream of the thermal front. Far upstream
of the depletion front (ζ � −v2τ ) we require C = 0 and S = 0. Conversely, in the
region between the thermal front and the depletion front (−v2τ � ζ � 0) we
require C = 1 and we set S = α. The constant α will be determined in § 3.2.2 from
consideration of the thermal reaction front. The asymptotic solution at long times is
then seen to be

C =
1

1 + exp(−ω2(ζ + v2τ ))
, S =

α

1 + exp(−ω2(ζ + v2τ ))
, (3.7)

by analogy with § 3.1. Direct substitution yields

v2 = 1 − λ(1 + V )

λ + α
, ω2 =

P (λ + α)

1 + V
. (3.8)



Thermally driven reaction fronts 337

Our assumption that v2 > 0 implies the condition

λV

α
< 1 (3.9)

for this double reaction front solution to be valid.

3.2.2. Thermal reaction front

We now solve for the reaction which develops across the thermal front. It is useful
to define the dimensionless coordinate

η =
ζ

2
√

τ
, (3.10)

so that equation (3.2) can be written as

CE (η, τ ) ≈ f0 (η) , τ 	 1, (3.11)

where

f0 (η) = 1 + (β − 1)
1 + erf(η)

2
. (3.12)

It can be shown that
d2f0

dη2
= −2η

df0

dη
. (3.13)

The governing equations (2.11) and (2.12) become

∂C

∂τ
+ 1

2

(
V τ−1/2 − ητ−1

) ∂C

∂η
− 1

4
ετ−1 ∂2C

∂η2
+ PS (C − CE) = 0, (3.14)

∂S

∂τ
+ 1

2

(
−τ−1/2 − ητ−1

) ∂S

∂η
− λPS (C − CE) = 0. (3.15)

For sufficiently long times the boundary conditions (2.13) and (2.14) can be
approximated by S = 1, C = β for η 	 0 and S = α, C = 1 for η � 0. We
seek an asymptotic solution of the form

C (η, τ ) =

∞∑
n=0

fn (η) τ−n/2, S (η, τ ) =

∞∑
n=0

gn (η) τ−n/2. (3.16)

Substitution into the governing equations (3.14) and (3.15), use of the relation (3.13)
and matching powers of τ can be used to yield the sets of functions {fn(η)} and {gn(η)}
(see the Appendix). The leading-order terms f0(η) and g0(η) give the asymptotic
solution

C = CE, S = 1 + λV (CE − β), (3.17)

which is valid at long times. Evaluating equation (3.17) for S at long times in the
region η � 0, we deduce that

α = 1 + λV (1 − β). (3.18)

Combining this with the solution for the depletion front (equation (3.8)), we find that

v2 = 1 − λ(1 + V )

1 + λ + λV (1 − β)
, ω2 =

P (1 + λ + λV (1 − β))

1 + V
, (3.19)

and so the critical case in which v2 = 0 and the thermal and depletion fronts overlap
is given by

λVβ = 1, (3.20)
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which is consistent with inequality (3.5) derived from the analysis of a single reaction
front.

4. Summary of the different asymptotic solutions
The analysis above shows that several qualitatively different solutions may arise

depending on the change in equilibrium concentration across the thermal front and
the degree of undersaturation of the injected fluid. We now describe the range of
possible asymptotic solutions and illustrate our discussion with figures 2 and 3. In
each case shown in these figures, the left-hand diagram shows the asymptotic solution
profiles while the right-hand diagram shows the path of a fluid particle in (ce, c)-
space as it moves through the formation. The left- and right-hand diagrams can be
interpreted in tandem by bearing in mind that a fluid particle always travels faster
than any of the reaction fronts. Specifically, we consider a fluid particle injected at
x = 0 (or ζ = −τ ) in an initial state in which ce = cie and c = ci . After it has flowed
past any fronts (ζ 	 V τ ) it achieves a final state in which ce = cf and c = cf . The
changes in state associated with the particle’s passage through the fronts are seen as
the step-changes in the profiles of ce and c in the left-hand diagrams. In terms of the
right-hand diagrams, the fluid particle’s motion past the fronts is represented by a
path through state-space from the initial point (cie, ci) to the final point (cf , cf ).

If the injection fluid has a greater equilibrium concentration than the formation
fluid (β < 1) then there are three types of solution as shown in figure 2. First,
when the injection fluid has a concentration in excess of the formation fluid
(β < 0), a double front structure develops for all values of λ as shown in § 3.1.
A depletion front is formed upstream of the thermal front (figure 2a). The fluid
returns to equilibrium across this depletion front, and then advances to the thermal
front, across which it reaches the formation temperature and maintains chemical
equilibrium by precipitating. The situation is similar when the composition of
the injected fluid is slightly less than that of the formation fluid (λVβ < 1) (figure 2b).
Finally, when the composition of the injection fluid is much less than that of the
formation fluid (λVβ > 1), the depletion front outruns the thermal front (figure 2c).
In this case there is no thermal reaction front. The injection fluid first adjusts to the
formation temperature at the thermal front although no reaction takes place here
and the fluid remains undersaturated. It then adjusts to the appropriate equilibrium
concentration when crossing the depletion front.

If the injection fluid has a lower equilibrium concentration than the formation
fluid (β > 1), two different types of solution can develop as shown in figure 3.
First, when the concentration of the injection fluid is slightly less than that of the
formation fluid (λVβ < 1), a depletion front develops near the source, upstream of
the thermal front (figure 3a). Incoming fluid reaches chemical equilibrium (at the
injection temperature) across this front. Further downstream, the fluid reaches the
thermal front, where it dissolves more of the reactant in the solid matrix in order
to retain chemical equilibrium as it changes to the formation temperature. Finally,
when the concentration of injection fluid is much less than that of the formation fluid
(λVβ > 1), the depletion front outruns the thermal front, and a single reaction front
develops downstream of the thermal front (figure 3b). In this case, the fluid adjusts to
the formation temperature when crossing the thermal front. No reaction takes place
here and the fluid remains undersaturated. Subsequently, the fluid attains chemical
equilibrium at the formation temperature by crossing the depletion front.
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Figure 2. The three possible long-time asymptotic regimes when the equilibrium concentration
of the injection fluid exceeds that of the formation fluid (β < 1). This occurs when hot fluid
displaces cold (in the case of a prograde mineral) or when cold fluid displaces hot (in the case
of a retrograde mineral). The diagrams on the left show the solution profiles. The diagrams
on the right show the path of a fluid particle (solid line) in (ce, c)-space from the point of
injection to the final equilibrium downstream of the reaction fronts. The dotted line represents
equilibrium.
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Figure 3. As figure 2, but showing the two possible long-time asymptotic regimes when the
equilibrium concentration of the formation fluid exceeds that of the injection fluid (β > 1).
This occurs when cold fluid displaces hot fluid (in the case of a prograde mineral) or when
hot fluid displaces cold fluid (in the case of a retrograde mineral).

5. Evolution of the system towards asymptotic solutions
The analysis above captures the variety of reaction front structures which may

develop at long times as fluid is injected into a formation. We now examine how
the system approaches these asymptotic solutions by considering the dimensionless
timescales over which the various structures in the asymptotic solutions form.

The timescale over which the depletion front becomes established can be defined
as the timescale over which S → 0 at the injection point ζ = −τ . It then follows
from equations (3.3) and (3.7) that the depletion front becomes established when
τ ∼ 1/λβP in the case of a single front and when τ ∼ 1/λP in the case of a
double front. We argued in § 2.3 that the thermal front becomes established when
τ ∼ 1. An analogous argument shows that the fluid front becomes established when
τ ∼ ε/(1+V )2. The manner in which the system approaches the long-time asymptotic
solution depends, therefore, on the relative magnitudes of these timescales. We stress
that the appropriate long-time asymptotic solution shown in figures 2 and 3 is
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determined by the values of the parameters λ, β and V which quantify compositional
differences and frontal speeds. The manner in which the asymptotic solution is
approached over time, however, depends on the additional parameters P and ε which
quantify the rates at which diffusion and reaction operate. For example, the parameter
P has been regarded as a constant in this model. If the temperature dependence of
the reaction rate were to be included, P would not be constant and the timescale
taken to reach the asymptotic solution would change. The asymptotic solution at long
times, however, would be unaffected.

5.1. Numerical simulations

We now present some numerical solutions of the initial value problem of § 2, to
illustrate the different ways in which a given long-time asymptotic solution can be
approached. The solutions were calculated using the PDECOL solver package of
Madsen & Sincovec (1979) as discussed by Hopkins (1992). This solver uses the
method of lines, and a finite-element collocation procedure is used for the spatial
discretization. The effects of numerical dispersion were minimized in the simulations
by the choice a fine spatial mesh.

The evolution of the system is illustrated for a single reaction front in figure 4 and
for a double reaction front in figure 5. In both figures, part (a) corresponds to ‘slow’
reactions (P < 1), while part (b) corresponds to ‘fast’ reactions (P > 1). In both figures
the equilibrium concentration (or equivalently, the temperature) adjusts smoothly
towards the analytic solution of equation (3.2). The fluid and solid concentrations
evolve in a more complex fashion as the depletion front and the thermal front separate
in space.

In figure 4(a), the first structure to form is the fluid front when τ ∼ ε/(1 + V )2 ≈
0.001 followed by the thermal front when τ ∼ 1 and the depletion front when
τ ∼ 1/λβP ≈ 50. Consequently, a sharp front in fluid concentration forms at the
fluid front before moving towards the depletion front as chemical reactions become
significant. In figure 4(b), the fluid front again forms when τ ∼ ε/(1+V )2 ≈ 0.001 but
in this case the depletion front forms over a comparable timescale τ ∼ 1/λβP ≈ 0.005
and so there is no time for a sharp fluid front to form. At very small times, diffusion
dominates over advection in equations (2.10) and (2.11). Since ε < 1 it follows that the
thermal difference between the injection and formation fluids (expressed as a change
in equilibrium concentration) propagates further than the chemical difference. Hence,
there is a region near the source for which C > CE at short times. Precipitation occurs
and the non-dimensional solid concentration S rises above unity. At longer times,
however, advection dominates over diffusion and this precipitated zone is removed
by a dissolution reaction. At long times both solutions in figure 4 tend towards the
type of asymptotic solution shown in figure 3(b).

In figure 5(a), the first structure to form is the fluid front when τ ∼ ε/(1 + V )2 ≈
0.004 followed by the thermal front when τ ∼ 1 and the depletion front when
τ ∼ 1/λβP ≈ 300. In contrast, in the case shown in figure 5(b), the depletion front
forms when τ ∼ 1/λβP ≈ 0.03, and so is well established before the thermal front
begins to appear sharp. At long times both solutions in figure 5 tend towards the
type of asymptotic solution shown in figure 3(a).

The evolution of the system towards the other asymptotic cases shown in figures 2
and 3 is similar to figures 4 and 5 but the details differ owing to the different initial
conditions.
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Figure 4. Numerical simulations showing the approach to the asymptotic solution in the
case of a single reaction front. Parameter values used in this example are: λ = 1, β = 2,
V = 2, and ε = 0.01. Hence v1 = 1 and ω1 = P . (a) The evolution of fluid concentration c,
equilibrium concentration ce and solid concentration s when P = 0.01. Profiles are shown for
τ = 0.1, 0.32, 1, 3.2, 10, 32, 100, 320, 1000, 3200, 10 000. (b) As (a) but with P = 100, and with
profiles shown for τ = 0.001, 0.0032, 0.01, 0.032, 0.1, 0.32, 1, 3.2, 10, 32, 100.
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Figure 5. The same as figure 4, but for the case of a double reaction front. Parameter values
used in this example are: λ = 1
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(a) Solution profiles with P = 0.01. Profiles are shown at the same dimensionless times as in
figure 4(a). (b) As (a) but with P = 100. Profiles are shown at the same dimensionless times
as in figure 4(b).

6. Discussion and conclusions
We have examined the structure of the reaction fronts that develop when

undersaturated fluid is injected at a constant rate into a reactive porous medium
containing fluid at a different temperature. We have shown that there is a critical
difference in composition between the injection and formation fluids which determines
whether (i) a single reaction front develops, as a depletion front travels downstream
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Figure 6. Graphical representation of the criterion distinguishing the single and double
reaction front solutions. The typical case where Γ = 1 is shown. cf − ci is a measure of the
difference in composition between the formation and injection fluids. νsf is a measure of the
amount of solid reactant present initially on the rock.

of the thermal front, or (ii) two distinct reaction fronts evolve, as a separate thermal
reaction front propagates downstream of the depletion front. Numerical solution of
the initial value problem illustrates how the solution evolves with time (figures 4 and
5) towards the asymptotic reaction front structure (figures 2 and 3). One striking
feature of this analysis is that we have identified circumstances in which an initially
homogeneous permeable rock may develop three regions of different mineral content
as a result of being flooded by fluid with different mineral content and temperature
to the original formation fluid (§ 3.2). In other situations, however, we have shown
that only two zones of different mineral content develop following the fluid migration
through the layer (§ 3.1).

Although the model is simple, it is of interest to examine the implications of
this work for the injection of water into hydrocarbon and geothermal reservoirs.
First, inequality (3.6) identifies the conditions under which a single reaction front
structure develops, depending on the composition of the injected fluid and the initial
concentration of reactant in the rock. For a typical system with Γ ∼ 1 this relation
reduces to the requirement that νsf < cf − ci for the single reaction front solution to
develop. Thus, as shown in figure 6, the single reaction front solution develops when
(i) the rock contains relatively little reactant initially, or (ii) the formation fluid has a
concentration sufficiently greater than that of the injection fluid. Conversely, a double
reaction front solution develops when (i) the rock contains a relatively large amount
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of reactant initially, or (ii) the formation fluid has a concentration which exceeds that
of the injection fluid by a relatively small amount, or (iii) the injection fluid has a
higher concentration than the formation fluid.

The timescale required to establish the reaction structure (max(1/k, DT /Γ 2u2))
depends on the effective thermal diffusivity (DT ∼ 10−6 m2 s−1), the speed of the
flow (u ∼ 10−4–10−5 m s−1 for engineering flows), and the reaction kinetics timescale
1/k which may be of order tens of minutes to a few hours, although this may
vary substantially depending on the conditions. Therefore, for engineering flows
we expect the asymptotic reaction front structure of figures 2 and 3 to develop
within hours. In the naturally occurring geological context, typical flow rates may
be smaller, of order 10−6–10−7 m s−1. The formation of the thermal front then
requires about a year, but subsequently the frontal structure of figures 2 and 3
will again provide an accurate asymptotic model for the structure of the reaction
fronts.

In the analysis above we have neglected any cross-flow heat transfer to neighbouring
impermeable layers. Such layers may be important over long timescales, as the high-
permeability aquifer equilibrates thermally through cross-flow diffusion of heat. If
the formation consists of a series of impermeable layers with thicknesses of order d ,
and high-permeability aquifers with thicknesses of order h, then thermal equilibration
requires a time of order te ∼ (d + h)2/4DT . Therefore, for small times t � te, the
value of Γ used in the above model for determining the relative speed of depletion
and thermal fronts is that associated with the high-permeability aquifer. However, at
longer times, t 	 te, Γ should take the revised value Γ̂ = ρcpl/(φ̂ρlcpl + (1 − φ̂)ρscps)

where φ̂ = φh/(h + d). In this long-time limit, the thermal front migrates at a speed
that is smaller than at short times. Therefore, it may be that during the initial phase
of injection, a double front structure develops, with the depletion front trailing the
thermal reaction front. However, as the aquifer equilibrates with the neighbouring
impermeable layers, the thermal reaction front decelerates, and if Γ̂ is sufficiently
small, then the thermal reaction front may be overtaken and incorporated into the
depletion front at long times. The effects of such cross-flow diffusion may be important
in a highly stratified formation, with relatively thin layers. For example, the time for
thermal equilibration across a 1 m layer is of order 0.03 year, while the time for
equilibration across a 10 m layer is of order 3 years. The former timescale may be
relevant for engineering water injection systems, while the latter may be short in
comparison with a natural geologically driven flow. We deduce that the record of
a double reaction front in the rock, which may be manifested by the formation of
three zones of different mineral content, may be rather different for flows which are
relatively short-lived (compared to the thermal equilibration time te) and for flows
which are relatively long-lived.

Depletion fronts and thermal reaction fronts may produce a substantial change
in the permeability of a rock, thereby modifying the flow pattern and pressure drop
across the formation with time (Phillips 1991; Raw & Woods 1999). Furthermore,
in the case of dissolution, the reaction fronts may become unstable and a broader
reaction zone may then develop (cf. Hinch & Bhatt 1990). We plan to report on
these effects, as applied to the double reaction front structure, in more detail in a
subsequent contribution.

This work has been supported by the BP Institute and the Newton Trust,
Cambridge.
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Appendix. General recurrence relations
In general, the relationships between the functions in equation (3.16) are

fn =

− 1
2
Vf ′

n−1 + 1
2
ηf ′

n−2 + 1
4
εf ′′

n−2 −
n−1∑
m=1

fmgn−m + 1
2
(n − 2)fn−2

Pg0

, (A 1)

g′
n = −(n − 1) (gn−1 + λfn−1) − η(g′

n−1 + λf ′
n−1) − 1

2
λεf ′′

n−1 + λVf ′
n, (A 2)

for n � 0, where we define fm(η) = gm(η) ≡ 0 for m < 0. For example, we have

f0 (η) = 1 + (β − 1)
1 + erf(η)

2
, (A 3)

g0 (η) = 1 + λV (1 − β)
1 − erf(η)

2
, (A 4)

f1 (η) =
V (1 − β)

2P
√

π

exp(−η2)

g0(η)
. (A 5)

It follows that the dimenionless rate of transfer of reactant is, to leading order in
τ−1/2,

PS(CE − C) = τ−1/2

[
V (1 − β)

2
√

π

]
exp (−η2). (A 6)
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